DRAFT PROGRAM MATRIX

SUNDAY 24 February 2019

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700 - 1930</td>
<td>Registration opens – Promenade Foyer</td>
<td></td>
</tr>
<tr>
<td>1800 - 1930</td>
<td>Welcome Reception – Promenade Foyer</td>
<td></td>
</tr>
</tbody>
</table>

MONDAY 25 February 2019

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700-1730</td>
<td>Registration opens – Promenade Foyer</td>
<td></td>
</tr>
<tr>
<td>0805-1005</td>
<td>Opening Plenary session – Promenade Room 1&2</td>
<td></td>
</tr>
<tr>
<td>0805-1005</td>
<td>Congress Opening Address</td>
<td></td>
</tr>
<tr>
<td>1005-1030</td>
<td>Morning tea – Promenade Foyer</td>
<td></td>
</tr>
<tr>
<td>1030-1210</td>
<td>Concurrent session 1</td>
<td>60 minutes plenary session</td>
</tr>
</tbody>
</table>

Concurrent session 1

<table>
<thead>
<tr>
<th>Breakout 1</th>
<th>Breakout 2</th>
<th>Breakout 3</th>
<th>HUMS 1</th>
<th>ISSFD 1</th>
<th>ISSFD 2</th>
<th>ISSFD 3</th>
<th>ISSFD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURES AND MATERIALS 1</td>
<td>AERODYNAMICS 1</td>
<td>SIMULATION</td>
<td>OPENING AND KEYNOTE 1</td>
<td>ATTITUDE DYNAMICS & CONTROL 1</td>
<td>FORMATION FLYING & SATELLITE CONSTELLATIONS 1</td>
<td>ASTRODYNAMICS 1</td>
<td>FLIGHT DYNAMICS OPERATIONS 1</td>
</tr>
<tr>
<td>Chair: TBA</td>
</tr>
<tr>
<td>Promenade Room 1</td>
<td>Promenade Room 2</td>
<td>Promenade Room 3</td>
<td>M3 & M4</td>
<td>M7 & M</td>
<td>M6</td>
<td>M1 & M2</td>
<td>M9 & M10</td>
</tr>
</tbody>
</table>

| 0805-1005 | Opening Plenary session – Promenade Room 1&2 | |
| 1005-1030 | Morning tea – Promenade Foyer | |

| 0805-1005 | Opening Plenary session – Promenade Room 1&2 | |
| 1005-1030 | Morning tea – Promenade Foyer | |

| 1030-1210 | Concurrent session 1 | |

Opening Plenary session – Promenade Room 1&2

Congress Opening Address

Plenary presentations

1 TBA
2 TBA
3 TBA

Morning tea – Promenade Foyer

Conference Plenary / Breakout session 1

| 1005-1030 | 200 minutes plenary session inclusive of 5-minute Q&A |

| 1005-1030 | morning tea – Promenade Foyer | |

Chair: TBA

Promenade Room 1

Promenade Room 2

Promenade Room 3

M3 & M4

M7 & M

M6

M1 & M2

M9 & M10

6 Degree of Freedom Dynamic Demonstrator for Structural Testing

Angus Manning
DST Group

A Rapid, Low-Cost Approach for Airplane Aerodynamic Database Development Using CFD and Wind Tunnel Data

Niall O’Shea
Boeing Aerostructures Australia

A Model-Based Digital Twin Concept for Aircraft System Failure Detection

Omar Hazbon Alvarez
RMIT University

KEYNOTE PRESENTER TBA

KEYNOTE PRESENTER Enhancement of the Spacecraft Attitude Dynamics Capabilities via Combination of the Inertial Morphing and Reaction Wheels

Pavel Trivailo
RMIT University

Accurate Osculating/Mean Orbital Elements Conversions for Spaceborne Formation Flying

Gabriella Gaia
Politecnico Di Milano

Connecting Low-Energy Orbits in the Saturn system

Elena Fantino
Khalifa University of Science and Technology

The Flight Dynamics Contribution to the Selection of MASCOT Landing Site on the Surface of the Asteroid Ryugu

Laurence Lorda
CNES

Please note this program is subject to change
DRAFT PROGRAM MATRIX

<table>
<thead>
<tr>
<th>Acoustic metamaterials for absorbing aeronautical noise</th>
<th>Aerodynamic testing using the Defence Science and Technology Group wind tunnels</th>
<th>A Simulation Environment for Air-vehicle Swarming</th>
<th>Spatial Formation of High Inclined Orbits with Use of Gravity Assists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jingwen Zhao RMIT University</td>
<td>Malcolm Jones DST Group</td>
<td>Robert Porter DST Group</td>
<td>Alexey Gruschevskii Keldysh Institute of AppliedMathematics of RAS</td>
</tr>
<tr>
<td>Advanced Helicopter Structural Research Facility</td>
<td>Digital Thread Implementation at Boeing Aerostructures Australia</td>
<td>Defence Aviation Safety Authority (DASA) perspectives on HUMS</td>
<td>TRICOM-1R Flight Dynamics Analysis: Angular Momentum Oscillation of Spinning Satellite in Highly Elliptical Orbit</td>
</tr>
<tr>
<td>Christopher Dore DST Group</td>
<td>Andrew Sheppard Boeing Aerostructures Australia</td>
<td>Rashmin Gunaratne DASA-ADF</td>
<td>Takayuki Hosenuma The University of Tokyo</td>
</tr>
<tr>
<td>An Empirical Model to Predict the Effect of Thermal Exposure on the Tensile Mechanical Properties of 7000 Aluminium Alloys</td>
<td>Modelling of a small internal combustion aero engine</td>
<td>A viable opportunity for fielding an aircraft structural health monitoring system</td>
<td>Drag-Free and Attitude Control System in LEO using Cold Gas Propulsion System: a feedback from the MICROSCOPE mission Stéphanie Delavault CNES</td>
</tr>
<tr>
<td>Suzana Turk DST Group</td>
<td>Ioan Porumb University of South Australia</td>
<td>Marcel Bos NLR</td>
<td>Sentinel-SP Loose Formation Flying with Suomi-NPP: LEOP, Orbit Acquisition and Orbit Maintenance Dirk Kuliper CGI Deutschland Ltd. & Co. KG</td>
</tr>
<tr>
<td>Kathryn Niessen DST Group</td>
<td>Chance McColl Technical Data Analysis, Inc. (tda)</td>
<td>James Cycon Lockheed Martin Corporation</td>
<td>Avoidance of radiofrequency interferences with Metop-A and Metop-B during Metop-C early operations Pier Luigi Righetti Eumetsat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day 1

| 1210-1310 | Lunch – Promenade Foyer |
| 1310-1450 | Concurrent session 2 |

Conference Plenary / Breakout session 1

<table>
<thead>
<tr>
<th>Breakout 2</th>
<th>Breakout 3</th>
<th>HUMS 1</th>
<th>ISSFD 1</th>
<th>ISSFD 2</th>
<th>ISSFD 3</th>
<th>ISSFD 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRENGTHS AND MATERIALS 2</td>
<td>AEROSPACE DESIGN 1</td>
<td>REGULATIONS, POLICY AND AIRWORTHINESS 1</td>
<td>STRUCTURAL LOADS AND HEALTH MONITORING 1</td>
<td>ATTITUDE DYNAMICS & CONTROL 2</td>
<td>FORMATION FLYING & SATELLITE CONSTELLATIONS 2</td>
<td>ASTRODYNAMICS 2</td>
</tr>
<tr>
<td>Chair: TBA</td>
</tr>
</tbody>
</table>

Analysis of the Life-

- Hazard Assessment of An evaluation of the Software Assisted Satellite Attitude Orbital design of Reconciliation of Bepi Colombo: Flight

Last Updated: 5/11/2018, *Please note this program is subject to change*
<table>
<thead>
<tr>
<th>Program Matrix</th>
<th>Authors</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting location of a Military Transport Aircraft Fatigue Test</td>
<td>Kai Maxfield DST Group</td>
<td>Turbulence: Initial Results, Jorg Schluter, Deakin University</td>
</tr>
<tr>
<td>Australian Civil Aviation Safety Authority (CASA)</td>
<td>Richard Yeun, RMIT University</td>
<td>DEMATEL method, Scheduling Theory</td>
</tr>
<tr>
<td>Hawk Mk127 Strain Gauge Serviceability Assessment</td>
<td>Josh McFarlane, RAE Systems Australia</td>
<td>Control with a six Control Moment Gyro cluster tested under Microgravity Conditions, Hélène Evain CNES</td>
</tr>
<tr>
<td>Formulation flight to keep relative distance applied to space gravitational wave antenna B-DECIGO</td>
<td>Shuhei Matsushita The University of Tokyo</td>
<td></td>
</tr>
<tr>
<td>Space Debris TOPEX/Poseidon Attitude Motion: Interplay of Conservative, Damping and Propelling Torques</td>
<td>Vladimir Sidorenko Keldysh Institute of Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>Deployment and Maintenance of Solar Sail- Equipped Cubesat Formation in LEO</td>
<td>Dmitry Pritykin Skolkovo Institute of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Sun-synchronous repeat ground tracks and other useful orbits for future space missions</td>
<td>Sung Wook Paek Samsung Sdi</td>
<td></td>
</tr>
<tr>
<td>Dynamic Operations during Launch and Early Orbit Phase</td>
<td>Frank Budnik ESA</td>
<td></td>
</tr>
<tr>
<td>Assessing the effect on structural integrity of undetected damage within composite structure via the F/A-18A/B Hornet Outer Wing Static Test (HOSAT)</td>
<td>Crystal Forrester DST Group</td>
<td>Crystal Forrester DST Group</td>
</tr>
<tr>
<td>Low speed aerodynamics of pitching airfoil using Proper Orthogonal Decomposition</td>
<td>Arpan Das RMIT University</td>
<td></td>
</tr>
<tr>
<td>Coevolution strategies for Airlines Industry based on Game theory</td>
<td>Iryna Heiets RMIT University</td>
<td></td>
</tr>
<tr>
<td>Individual Aircraft Tracking: Towards a Digital Twin</td>
<td>Oleg Levinski DST Group</td>
<td></td>
</tr>
<tr>
<td>Space Debris T0PEX/Poseidon Attitude Motion: Interplay of Conservative, Damping and Propelling Torques</td>
<td>Vladimir Sidorenko Keldysh Institute of Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>Deployment and Maintenance of Solar Sail Equipped Cubesat Formation in LEO</td>
<td>Dmitry Pritykin Skolkovo Institute of Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Sun-synchronous repeat ground tracks and other useful orbits for future space missions</td>
<td>Sung Wook Paek Samsung Sdi</td>
<td></td>
</tr>
<tr>
<td>Dynamic Operations during Launch and Early Orbit Phase</td>
<td>Frank Budnik ESA</td>
<td></td>
</tr>
<tr>
<td>C-130J-30 Wing Fatigue Test and Implementation</td>
<td>Ross Stewart GinetIQ</td>
<td>Bio-inspired flapping wing micro air vehicles material properties and evolutionary fabrication, Nahid Chitaz UNSW</td>
</tr>
<tr>
<td>Defining Autonomy - A Safety Certification Perspective</td>
<td>Reece Clothier Boeing Research & Technology</td>
<td></td>
</tr>
<tr>
<td>Effects of Atmospheric Excitation on Vibration Based Condition Monitoring Methods for Hybrid-Electric Aircraft Propulsion Systems</td>
<td>Philipp Schilt Siemens AG</td>
<td></td>
</tr>
<tr>
<td>Dynamic analysis of gravitationally coupled orbit-attitude dynamics about an irregular-shaped asteroid</td>
<td>Yue Wang Beihang University</td>
<td></td>
</tr>
<tr>
<td>Modeling and analysis of gravitationally coupled orbit-attitude dynamics about an irregular-shaped asteroid</td>
<td>Yue Wang Beihang University</td>
<td></td>
</tr>
<tr>
<td>Trajectory and orbit design for the Venera-D mission</td>
<td>Kovalenko Space Research Institute of the Russian Academy of Sciences (IRAS)</td>
<td></td>
</tr>
<tr>
<td>ExoMars 2016 – Flight Dynamics commanding during the aerobraking operations for the Trace Gas Orbiter</td>
<td>Robert Guilianyá Jané GMV INSYSN at ESA/ESOC</td>
<td></td>
</tr>
<tr>
<td>Damping properties of cork/fibre reinforced polymer composites</td>
<td>Jose Silva RMIT University</td>
<td>CFD-Coupled 6-DOF Attitude & Trajectory Analysis for Hypersonic Air Vehicles, Julian Fernandez Gonzalez, Escalante</td>
</tr>
<tr>
<td>Efficient consumption of Civil Airworthiness Authorities' products and services using Airworthiness Recognition</td>
<td>James Herringer DASA</td>
<td></td>
</tr>
<tr>
<td>The Concept of Monitoring System for Individual Mi B Helicopter with Integrated Sensor Network</td>
<td>Artur Kurnyta AFIT Poland</td>
<td></td>
</tr>
<tr>
<td>Spinning Cubesats Launchers</td>
<td>Nevsan Sengil University of Turkish Aeronautical Association</td>
<td></td>
</tr>
<tr>
<td>HRWS -- A Control Theoretical Analysis of Formation Flight with Inter-satellite Lorentz Forces</td>
<td>Hao Zhang Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences</td>
<td></td>
</tr>
<tr>
<td>Using Telemetry to Navigate the MarCO Cubesats to Mars</td>
<td>Brian Young Jet Propulsion Laboratory / California Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Exomars 2016 – Flight Dynamics operations for the targeting of the Schiaparelli module Entry Descent and Landing and the Trace Gas Orbiter Mars orbit insertion</td>
<td>Robert Guilianyá Jané GMV INSYSN at ESA/ESOC</td>
<td></td>
</tr>
<tr>
<td>Derivation of shell knockdown factors of grid-stiffened cylinders with various thickness ratios</td>
<td>Han-Il Kim Chungnam National University</td>
<td>Current knowledge of corrugated dragonfly wing structures and future measurement methodology, Nasim Chitsaz University of South Australia</td>
</tr>
<tr>
<td>Improved Technical Airworthiness Taxonomy: Capturing Business Intelligence to Support an Effective Safety Management System</td>
<td>Ben Whitting DASA</td>
<td></td>
</tr>
<tr>
<td>Low Power, Low Cost, Lightweight, Multichannel Optical Fiber Interrogation Unit for Structural Health Management of Rotor Blades</td>
<td>Edgar Mendez Redondo Optics Inc.</td>
<td></td>
</tr>
<tr>
<td>The Pioneer 10 Spin Anomaly as an Observation Artefact</td>
<td>Craig Watkins Informative Technology Innovations</td>
<td></td>
</tr>
<tr>
<td>FLEX tandem with Sentinel</td>
<td>Itziar Barat Deimos @ Esr</td>
<td></td>
</tr>
<tr>
<td>On-Orbit Mass Property Estimation for Cargo Spacecraft using Operation Data before Machine Learning</td>
<td>Ali Noumi JAXA</td>
<td></td>
</tr>
<tr>
<td>Past Results and Future Missions of STARS Series Satellite</td>
<td>Shashiro Kohri Shizuoka University</td>
<td></td>
</tr>
<tr>
<td>Concurrent Session 3</td>
<td>Breakout 2</td>
<td>Breakout 3</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Chair: TBA</td>
<td>Chair: TBA</td>
<td>Chair: TBA</td>
</tr>
<tr>
<td>Promenade Room 1</td>
<td>Promenade Room 2</td>
<td>Promenade Room 3</td>
</tr>
</tbody>
</table>

Developing Experimental Techniques for Detecting Composite Failure Modes and Fatigue Crack Growth in an Aircraft Panel

Michael Forsey

Graphene as an Enabler in Aerospace Design

Stephen Russo

QinQiQ

Douglas Williams

Air Force PC-9/A Ageing Aircraft Challenges

David Crossman

Air Training and Aviation Commons Systems Program Office

Extending the Helicopter System Efficiency by Integrating HUMS with Crew Fatigue/Storm/Real-Time Monitoring Capabilities

Marco Gazzana

Leonardo Helicopters

METEOSAT

Range antennas relocation: performance assessment and compensation using telescopes data service

Stefano Pessina

Eumetsat

Multi-Objective Optimisation of NRHO-LLO Orbit Transfer via Surrogate-Assisted Evolutionary Algorithms

Hideaki Ogawa

RMIT University

Dawn’s final mission at Ceres: Navigation and Mission Design Experience

Dongsuk Han

Jet Propulsion Laboratory / California Institute of Technology

Effect of surface finish and surface roughness on the operational life of additively manufactured parts

Rhy Jones

Dept Of Mechanical And Aerospace Engineering

Performance of Electric VTOL Hovering Craft

Graham Dorrington

RMIT University

Protecting infant airline passengers from injury in a severe but survivable accident

Adam Shrimpton

DASA

Collision probabilities of tethers and sails against debris or spacecraft

Ricardo García-Pelayo

Universidad Politécnica De Madrid

Introducing CBM+ on M13A5A Power pack utilising HUMS data

Vishwanath Wickramanayake

LEA CAGS

Consider Probability Hypothesis Density Filtering for Multiple Space Objects Tracking

Yang Yang

RMIT University

Surrogate-Based Multi-Fidelity System Design Optimisation for Cislunar Missions

Hideaki Ogawa

RMIT University

Aeroshaking the ExoMars TGO: The JPL Navigation Experience

Dongsuk Han

Jet Propulsion Laboratory / California Institute of Technology

Enhanced Teardown of a PC-9/A Wing Main Spar Cap with Miss-Drills

Ben Main

DST Group

Reducing durability test duration though the lead crack framework

Loris Molent

DST Group

Qualifying the Digital Pilot

Reece Clothier

Boeing Research & Technology

Concepts in Using Heavy Cargo Aircrafts for Aerial Firefighting Operations

Anil Ravindran

RMIT University

Heiltune Integrated Vehicle Health Monitoring – Scalable Aircraft Health Monitoring

Paul Hutchinson

Heiltune

Aeolus Orbit Control Strategy: Analysis and Final Implementation

Miguel Martin Serrano

Scisys

Optimized transfers between Earth-Moon invariant manifolds

Laurent Beauregard

Isae-supeaero

VFR-into-IMC Accidents: An Analysis of Human and Weather-related Factors

Graham Wild

RMIT University

Forensic Analysis of Damage found during the Teardown of a Military Transport Aircraft Fatigue Test Article

Douglas Williams

DST Group

Aircraft safety and passenger anthropometry – evaluating emergency egress times of different passenger profiles

Damien Melis

RMIT University

Regulating Safety Management Systems: Common issues and solutions for the future

Joshua Hamson

DASA

Software Development to Deliver a Super Hornet and Growler Deployable Engine Life Management Capability

Robert Findlay

BAE Systems

Navigation Challenges during ExoMars Trace Gas Orbiter Aeroshaking Campaign

Gabriele Belli Deimos Space

Optimal far rendezvous strategy in the cis-lunar space

Mani Vinayak

Gopalan Singaman Iae-supeaero

Sentinel-3 orbit control strategy

Daniel Aguilar Taboada

Eumetsat

Fracture analysis of Composite scarf repairs-A simple method

Amar Garg

Boeing Aerostructures Australia

Virtual Design Optimisation and Testing (VDOT) Framework for Innovative Sustainment

Ali Dali

RMIT University

Human Error Classification and Management in Aviation Design – A Critical Review

Eranga Batuwangala

RMIT University

Vibration and Tribology System for Military Aircrafts

Mariusz Zokowski

FIT Poland

Estimating atmospheric density profiles using orbit determination with a focus on JUICE and Cassini

Anne Hickey

RMIT University

Angles-Only Robust Closed-Loop Guidance for Spacecraft Rendezvous Proximity Operations via

Last Updated: 5/11/2018, *Please note this program is subject to change
DRAFT PROGRAM MATRIX

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800-2300</td>
<td>2019 Congress Dinner at Aerial</td>
</tr>
</tbody>
</table>

AIAC 2019 Congress Dinner
Join us to conclude the first two days of the Congress at Aerial. Situated at South Wharf
Time: 6:00pm – 11:00pm
Location: 17 Dukes Walk, South Wharf VIC 3006.
Includes: Canapes, Entrée, Main Course, Dessert with tea and coffee
Keynote Presenter – TBA
DRAFT PROGRAM MATRIX

TUESDAY 26 February 2019

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800-0900</td>
<td>Registration opens – Promenade Foyer</td>
<td></td>
</tr>
<tr>
<td>0830-1015</td>
<td>Plenary Presentations – Promenade Room 1&2</td>
<td></td>
</tr>
<tr>
<td>1015-1040</td>
<td>Morning tea – Promenade Foyer</td>
<td></td>
</tr>
<tr>
<td>1040-1220</td>
<td>Concurrent session 4</td>
<td></td>
</tr>
</tbody>
</table>

Conference Plenary / Breakout session

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830-0900</td>
<td>Plenary Presentations 1</td>
<td>TBA</td>
<td>Promenade Room 1&2</td>
</tr>
<tr>
<td>0900-1000</td>
<td>Plenary Presentations 2</td>
<td>TBA</td>
<td>Promenade Room 1&2</td>
</tr>
<tr>
<td>1000-1100</td>
<td>Plenary Presentations 3</td>
<td>TBA</td>
<td>Promenade Room 1&2</td>
</tr>
<tr>
<td>1100-1200</td>
<td>Plenary Presentations 4</td>
<td>TBA</td>
<td>Promenade Room 1&2</td>
</tr>
<tr>
<td>1200-1300</td>
<td>Breakout 2</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1300-1400</td>
<td>Breakout 3</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1400-1500</td>
<td>Breakout 4</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1500-1600</td>
<td>HUMS 1</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1600-1700</td>
<td>ISSFD 1</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1700-1800</td>
<td>ISSFD 2</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
<tr>
<td>1800-1900</td>
<td>ISSFD 3</td>
<td>TBA</td>
<td>Promenade Foyer</td>
</tr>
</tbody>
</table>

Breakouts

<table>
<thead>
<tr>
<th>Time</th>
<th>Breakout 1: Structures and Materials 1</th>
<th>Chair</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830-0900</td>
<td>Investigating meso-mechanical failure in composite materials using the semi-conformal Embedded Technique (SET)</td>
<td>Nayee Chowdhury</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Case Study in Uncertainty Quantification of UAS Behaviours Against Mission Requirements</td>
<td>Valtteri Kallinen</td>
<td></td>
</tr>
<tr>
<td>0900-1000</td>
<td>Modelling and Prediction of Ship Corrosion Defects for Maintenance Planning</td>
<td>Geoffrey Will</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmospheric Air Quality Measurement Using Fleet of Multi-Rotor Unmanned Aircraft System</td>
<td>David Tennent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive Human-Machine Interfaces and Interactions for Cooperative Bushfire Surveillance and Fire-Fighting</td>
<td>Achim Washington</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aircraft Proximity and Well-Clear Volumes Grace Garden Boeing Research & Technology</td>
<td>Xiang Lim</td>
<td></td>
</tr>
<tr>
<td>1000-1100</td>
<td>Challenges to the Risk-based Regulation of Unmanned Aircraft Systems</td>
<td>Achim Washington</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive Human-Machine Interfaces and Interactions for Cooperative Bushfire Surveillance and Fire-Fighting</td>
<td>Achim Washington</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automatic Ground Collision Avoidance System</td>
<td>Russell Turner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of a GPS receiver for geosynchronous satellites toward autonomous operation</td>
<td>Yu Nakajima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK MOD HUMS and Flight Data Exploitation Strategy</td>
<td>Jeff Day</td>
<td></td>
</tr>
<tr>
<td>1100-1200</td>
<td>Breakout 2</td>
<td>Chair: TBA</td>
<td>Promenade Room 2</td>
</tr>
<tr>
<td></td>
<td>A Study of Orbit estimation for a spacecraft by Using the Re-duced order Filter</td>
<td>Irina Cavallari</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimizations for In-Flight Orbit Determination of an Autonomous Deep-Space CubeSat</td>
<td>Boris Segret</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reentry Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1200-1300</td>
<td>Breakout 3</td>
<td>Chair: TBA</td>
<td>Promenade Room 3</td>
</tr>
<tr>
<td></td>
<td>Transfer from a Lunar Distant Retrograde Orbit to Mars through Lyapunov Orbits</td>
<td>Irene Cavallari</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1300-1400</td>
<td>Breakout 4</td>
<td>Chair: TBA</td>
<td>Promenade Room 4</td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1400-1500</td>
<td>HUMS 1</td>
<td>Chair: TBA</td>
<td>Promenade Room 5</td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1500-1600</td>
<td>ISSFD 1</td>
<td>Chair: TBA</td>
<td>Promenade Room 6</td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1600-1700</td>
<td>ISSFD 2</td>
<td>Chair: TBA</td>
<td>Promenade Room 7</td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
<tr>
<td>1700-1800</td>
<td>ISSFD 3</td>
<td>Chair: TBA</td>
<td>Promenade Room 8</td>
</tr>
<tr>
<td></td>
<td>Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit</td>
<td>Emmanuel Blazquez</td>
<td></td>
</tr>
</tbody>
</table>

*Last Updated: 5/11/2018, *Please note this program is subject to change*
DRAFT PROGRAM MATRIX

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair(s)</th>
<th>Room</th>
<th>Breakout 1</th>
<th>Breakout 2</th>
<th>Breakout 3</th>
<th>Breakout 4</th>
<th>Breakout 5</th>
<th>Breakout 6</th>
<th>Breakout 7</th>
<th>Breakout 8</th>
<th>Breakout 9</th>
<th>Breakout 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220-1315</td>
<td>Lunch – Promenade Foyer</td>
<td>TBA</td>
<td>Promenade Room 1</td>
<td>M1 & M2</td>
<td>M1 & M2</td>
<td>M3 & M4</td>
<td>M6</td>
<td>M7 & M8</td>
<td>M9 & M10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1315-1455</td>
<td>Concurrent session 5</td>
<td>TBA</td>
<td>Promenade Room 2</td>
<td>HUMS 2</td>
<td>HUMS 1</td>
<td>ISSFD 1</td>
<td>ISSFD 2</td>
<td>Breakout 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20min presentation inclusive of 5-minute Q&A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chair: TBA</td>
</tr>
<tr>
<td></td>
<td>Promenade Room 1</td>
<td>Promenade Room 3</td>
<td>M1 & M2</td>
<td>M3 & M4</td>
<td>M6</td>
<td>M7 & M8</td>
<td>M9 & M10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRUCTURES AND MATERIALS 5</td>
<td>PROPULSION 1</td>
<td>AVIONICS, ATM & MISSIONS SYSTEMS 2, SYSTEMS SUPPORT AND INFRASTRUCTURE 1</td>
<td>SENSOR TECHNOLOGY & PROGNOSTIC HEALTH MANAGEMENT</td>
<td>DIAGNOSTICS AND PROGNOSTICS 1</td>
<td>ORBIT DYNAMICS & CONTROL</td>
<td>MISSION ANALYSIS & DESIGN 1</td>
<td>UNMANNED AERIAL SYSTEMS 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note this program is subject to change
DRAFT PROGRAM MATRIX

<table>
<thead>
<tr>
<th>Conference Room 1 & 2</th>
<th>Breakout 2</th>
<th>Breakout 3</th>
<th>Breakout 4</th>
<th>HUMS 1</th>
<th>ISSFD 1</th>
<th>ISSFD 2</th>
<th>Breakout 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURES AND MATERIALS 6</td>
<td>PROPULSION 2 AND ADDITIVE MANUFACTURING</td>
<td>AVIONICS, ATM AND MISSIONS SYSTEMS 3</td>
<td>UNMANNED AERIAL SYSTEMS 2</td>
<td>DIAGNOSTICS AND PROGNOSTICS 2</td>
<td>ORBIT DYNAMICS</td>
<td>MISSION ANALYSIS & DESIGN 2</td>
<td>UNMANNED AERIAL SYSTEMS 3</td>
</tr>
<tr>
<td>Chair: TBA</td>
</tr>
<tr>
<td>Promenade Room 3</td>
<td>M1 & M2</td>
<td>M1 & M2</td>
<td>M3 & M4</td>
<td>M6</td>
<td>M7 & M8</td>
<td>M9 & M10</td>
<td></td>
</tr>
</tbody>
</table>

OPERAND: Aircraft Buffet Load Prediction Using Nonlinear System Identification Algorithms
- **Michael Candon**
- **RMIT University**

- The Szorenyi Two Chamber Rotary Engine Concept
- Peter King
- Rotary Engine Development Agency

- Achieving Unmanned Aircraft System Sense and-Avoid by Multi Sensor Data Fusion
- Luthfi Nurhakim
- RMIT University

- Validation of an Acoustic Travelling Wave System Through Forced Response Analysis of a Research Blisk
- Mitchell Cosmo
- DST Group

- Wollongong
- AFIT Poland

- Cyclostationary-based tools for bearing diagnostics of helicopter planetary gearboxes
- Konstantinos Gryllias
- KU Leuven Belgium

- Evolutionary Optimization
- Gaurav Vaibhav
- Indian Space Research Organization

- Risk reduction and collision risk thresholds for missions operated at ESA
- Yue Wang
- Beihang University

- DST Group
- UAV navigation over littoral zone in GPS denied conditions

- Aakash Dawadee
- DST Group

OPERAND: Virtual Sensor Expansion of Flight Measurement Data using Calibrated GVT Models
- **Stephan Koschel**
- **RMIT University**

- Fuel Injection Conversion for a Small Aero Engine
- Matthew O’Neil
- University of South Australia

- Asset Management of an Ageing Aircraft
- Robert Crowe
- Jacobs Australia

- Leverageing Digital Clones for Prognostics Health Management
- Melissa McReynolds
- Sentient Science

- Separation of mechanical source vibrations under variable speed conditions
- Dany Abboud
- Safran Tech

- Simple and efficient algorithm to search through the Gaia catalogue
- Pedro Santana Camprubi
- CGI Deutschland Ltd. & Co. KG

- DST Group
- UAV navigation using visual waypoints: A hardware-in-the-loop approach

- Aakash Dawadee
- DST Group

Prediction of in-flight loading using neural networks: case study
- **Daniel Franke**
- **DST Group**

- Damage assessment in composite and bonded materials
- Rhys Jones
- Monash University

- Energy Harvesting Inside a Helicopter
- Main Gearbox to Power a HUMS Transducer
- Riyazal Hussein
- DST Group

- Using K-Nearest Neighbour machine learning technique to classify archived Helicopter Wear
- Data
- Eric Lee
- DST Group

- On the chaotic drift in terrestrial orbits
- Jerome Daquin
- University of Padova

- Machine Learning for Atmospheric Drag Prediction of LEO satellites
- Hiroshi Kato
- Japan Aerospace Exploration Agency

- RMIT University
- Wind Tunnel and Launching Test for Bi-modal Unmanned System
- Dian Guo

1455-1520
- Afternoon tea – Promenade Foyer

1520-1700
- Breakout 4
- **Chair: TBA**

- Promenade Room 3
- M1 & M2

- M3 & M4

- M6

- M7 & M8

- M9 & M10

- Low-NOx Flameless Combustor for Gas Turbines: An Experimental and Numerical Study
- Farid Christo
- Deakin University

- Energy Management During Descent Operations: Human Machine Teaming Considerations
- Alessandro Gardi
- RMIT University

- Collision Avoidance with Rules of the Air Compliance for Unmanned Aircraft Detec and Avoid
- Timothy Molloy
- QUT

- Experimental Study of Gearbox Faults using Acoustic Emission Signals
- Chris Mechefske
- Queens University Canada

- An open-source, high-fidelity orbit propagator (HFOP) for asteroid trajectory simulation
- Sung Wook Paek
- Samsung Sdi

- Utilizing the Chaotic Tumbling of CubeSats
- An Graham Dorrington
- RMIT University

- Influence of rotor wake interference on multicopter UAS forward flight performance
- Sam Prudden
- RMIT University

- Real-time system
- Numerical Analysis of Mission Design for Early Warning
- Evaluation of LIDAR

- Detection and State propagation in Concept
DRAFT PROGRAM MATRIX

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700-1725</td>
<td>Congress Plenary Closing & Award Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830-2300</td>
<td>HUM2019 Congress Dinner (HUMS Delegates only, limited seats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time: 6:30pm – 11:00pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location: Vibe Hotel Savoy, Melbourne, 630 Little Collins Street, Melbourne VIC 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost: Included in your registration, please indicate your attendance at time of registration for catering purposes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes: Pre-drinks/canapes, Entrée, Main Course, Dessert with tea and coffee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Strategy for a Multi-provider / Multi-user Structural Experimentation Capability within Aerospace Division of DST Group

- **Ben Main**
- **DST Group**

Identification for fixed wing Unmanned Aerial Vehicle

- **Arpan Das**
- **RMIT University**

Thermal Loading in Dual-Bell Rocket Nozzles

- **Christopher Hewitt**
- **RMIT University**

Plant Disease Detection from UAS

- **Hai Pham**
- **RMIT University**

and X-Band Radar Sensors in a Particle-Dense Environment

- **Ricardo Cannizzaro**
- **DST Group**

Location of non-artificial defects in rolling element bearing using acoustic emission

- **Francesco Larizza**
- **University of Adelaide**

in libration point regions of perturbed three body problems

- **Alain Lamy**
- **CNES**

Uncertain irregular gravity field with differential algebra method

- **Jingliang Feng**
- **Nanjing University**

Instrumentation for Flapping Wing UAVs and MAVs

- **Alex Lefik**
- **University of South Australia**

Thermoelastic assessment of impact damaged composites under cyclic loading

- **Cedric Antolis**
- **RMIT University**

Additive metal solutions to aircraft skin corrosion

- **Neil Mathews**
- **RUG Australia**

Risk-oriented Systems Engineering Approach to address Cyber Security issues of Civil Aircraft, Air Traffic Management, and Airports Systems

- **Lanka Bogoda**
- **RMIT University**

Impact of gusts on battery performance in a small electric UAV using hardware-in-the-loop simulation

- **Armit Sethi**
- **University of Sydney**

Some problems of diagnosis of helicopter Mi-24 from the perspective of HUMS system

- **Andrezj Gebura**
- **AFIT Poland**

Review of the Draper Semi-analytics Satellite Theory (DSST)

- **Paul Cefola**
- **University of Buffalo**

Practical considerations and a realistic framework for a Space Traffic Management system

- **Daniel Oltrogge**
- **Analytical Graphics Inc.**

Comparison of Feature Based and Direct Visual SLAM in High-Attitude UAS Flight

- **David Tennent**
- **RMIT University**

Qualification of Material Microstructure and Mechanical Performance of Aerospace Additive Manufacturing Parts using Predictive Modeling Tool

- **Behroz Jalalhamedi**
- **Sentient Science**

Safety Assessment of UAS and Manned Aircraft Encounter with the Application of Dynamic Fault Trees and Monte Carlo Simulation

- **Asma Tabassum**
- **University of North Dakota**

Indoor Free-flight Experimentation of a Multi-Rotor Uninhabited Aircraft using a Beacon Positioning System

- **Chatura Nagahawatte**
- **DST Group**

Condition Monitoring of Worm and Worm Wheel Gearbox Using Vibration Measurement Techniques

- **Anil Kumar**
- **AIAI India**

Periodic corrections in secular Milankovitch theory applied to passive debris removal

- **Aaron Rosengren**
- **University of Arizona**

Mission Control Center is the key element of the space traffic management technology

- **Aleksey Kutomonov**
- **Roscosmos**

Proposed workflow to allow Artificial Intelligent Agents for Airborne Systems and Equipment Certification

- **Bernardo Coelho**
- **Leap Australia**

Experimental characterization of a small internal combustion aero engine

- **Ioan Porumb**
- **University of South Australia**

Opening the skies for UAVs – an Integrated Airspace of the Future!

- **Emily Hughes**
- **Boeing Research & Technology**

Inserting Virtual Dynamic Entities into the UAV Challenge Medical Express

- **Robert Porter**
- **DST Group**

A Comparative Study of Online Impedance Measurement Techniques for a Lithium Polymer Battery Using Equivalent Circuit Models

- **Amrit Sethi**
- **University of Sydney**

A density based approach to the propagation of re-entry uncertainties

- **Mirko Trisolini**
- **Politecnico Di Milano**

Reconsideration of the Thermal Contribution to New Horizons Acceleration

- **Craig Watkins**
- **Innovative Technology Informative Technology**

Contribution to New Horizons Acceleration

- **Mirko Trisolini**
- **University of South Australia**

Please note this program is subject to change
WEDNESDAY 27 February 2019

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 0900-01200 | Avalon Technical Presentations
TBA
Avalon Airshow |
| 0900-1130 | Workshop: Advancing Structural Simulation to drive Innovative Sustainment Technologies
Location: Engineers Australia – Discovery Hub Room
Level 31 600 Bourke St, Melbourne VIC 3000 |

Thursday 27 February 2019

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 0900-1200 | Avalon Technical Presentations
TBA
Avalon Airshow |
| 1400-1600 | Single Aviation Industry Workshop
Conference Room 2
Avalon Airshow |